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Guided[ Waves in Moving Media

J. R. COLLIER, MEMBER, IEEE,

Mrsfracf—Thk paper contains a theoretical study of the guided

waves in a moving isotropic medium. The normal modes which can

exist in a circular or rectangular wave guides are found by solving

the Maxwell-Minkowski Equations subject to the appropriate botmd-

ary conditions. By certain transformations of field vectors, it is possi-

ble to change the Maxwell-Minkowski Equations into familiar forms

such that the method of vector potentials can be applied to derive

complete expressions for the field vectors. The results demonstrate

that expressions for the propagation constant and the transverse-

wave impedance and admittance in stationary media are modified by

terms independent of the guide geometry when the media are moving.

INT1<ODuCTION

T
HIS PAPER IS concerned with electromagnetic

wave propagation in waveguides, tilled with di-

electric material, which move down the waveguide

with constant velocity. To simplify the treatment, we

regard the dielectric as being rigid, SCI that all portions

of the material may be considered to be moving with the

same velocity. We further regard the material as being

electrically and magnetically homogeneous, isotropic,

and linear.

The results of IJ’finkowski’s theory are the foundations

from which we proceed. Consider twc, reference frames

whose z axes coincide with an appropriate longitudinal

element of a waveguide of arbitrary cross section. The

primed frame is fixed in the dielectric material, and the

unprimed frame is attached to the waveguide (see

Fig. 1). Thus, the two reference frames are in relative

motion along their z axes.

For the observer at rest in the primed reference frame,

the electrodynamics of stationary media apply. In order=

to find the formulation of electrodynamics which applies

for the observer at rest, with respect to the waveguide

(i.e., fixed in the unprimed frame), cme must cast the

electromagnetic field and source vectors into the four-

and-six-vector form, and then apply the appropriate

form of the Lorentz Transformation according to the

special theory of relativity. The field and source quanti-

ties transform in such a manner that the form of Max-

well’s Equations remains unaltered or invariant. In the

unprimed system, Maxwell’s Equations are:

VXE+~=O (1)
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Fig. 1. Circular waveguide tilled with a linear, homogeneous, iso-
tropic dissipative medium moving with uniform velocity v with
respect to the guide.

VXH–; =J (2)

V.B = O (3)

V. D=p. (4)

For media at rest, the constitutive relations are

known. Thus, in the primed reference frame

B’ = p’H’ (5)

DI ~ ~1 El (6)

J’ = ~’E’. (7)

According to Minkowski’s theory, (5)–(7) are suf-

ficient for us to determine the constitutive relat ions

for the unprimed field quantities. By applying the

Lorentz transformation to the field and current vectors

in (5)–(7), Minkowskil obtained the following relations

[)++VXH (8)
C02

()lil+~x ~xB =JH+LLX ()‘XH
c c co co

11
—

(-- -)
VXE (9)

c’ – co’

1 Sommerfeld, A., Lectures on Theo~etical Physics, VC,l III, f3ectro-
dynamics. New York: Academic, 1952, pp 280-283.
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J–pv= ‘

/1 -i-)

V2

CQ

{ [
. E+vx B–l ~.(E+vx B)

1}
(10)

co co

where c and CO denote the velocities of light in the

Imedium at rest and in a vacuum (i. e., C–2 =p’e’ and

co–2 = poeo) and v the velocity of the medium (primed

frame) relative to the waveguide walls (unprimed

frame). If v is assumed to be much smaller than the

velocity of light, in the aforementioned relations, terms

of second order and higher in v/c or v/c. may be ne-

glected when compared with unity. Thus, (8)–(10) be-

come approximately

D =/ E+Ax H (11)

B=p’H– AxE (12)

J=pv+v’(E+v XB) (13)

where A= (l/cz — l/c02) v.

If the Lorentz transformation is applied to the four-

current vector (J, icop), one finds that

(14)

If we confine our discussion here to the steady state

analysis, the free charge density p’, associated with the

reference frame in which the medium is at rest, vanishes,

One notes from (14) that the free charge density mea-

sured in the unprimed coordinate system is not zero, but

that

(15)

Equations (1 1)–(13) and (15) can be used to eliminate

B, D, J, and p from Maxwell’s Equations (l)-(4). If

the time convention e–i”! is used, one mav obtain the

following equations, which

of v/c:

(V+ icoA)

(v + T2JA – LL’c7’V)

are accurate to the order

X E = icrw’H (16)

X H = – icoQ~f’E (17)

(V+ icuA).H= O (18)

(V+ ioJA – /J’c7’V)E = O (19)

where

‘e’”=“(1+’3
Equations (16)–(19) might appropriately be designated

as “Maxwell-Minkowski Equations for Moving Iso-

tropic Media. ”

POTENTIAL FUNCTIONS

To find proper solutions of (1 6)–(19) so as to describe

the electromagnetic fields in waveguides, it is con-

venient to introduce potential functions pertinent to

the Maxwell-Minkowski Equations. Similar to the tech-

nique used in standard waveguide theory, two types of

potential functions, the electric and the magnetic types,

will be introduced.

Case I. Electric Type

It will be shown that an electric type vector potential

provides a convenient derivation of the field expressions,

pertaining to the electric or TM modes. To make use

of the standard technique, we first transform (1 6)–(19)

into familiar forms. This can be done by letting

E = e–iwii.R& (20)

H = e–imA.RH1 (21)

where R denotes the position vector. Substituting (20)

and (21) into (16)–(19) one obtains the following equa-

tions for El and HI:

V X El = @J’H1 (22)

(V – /./u’v) x H, = – zk.ff’E1 (23)

VCH1=O (24)

(V – ~’a’v) . E, = O. (25)

In view of (24), we may define an electric vector poten-

tial function

H,= VX A,. (26)

By eliminating ~, between (22) and (26), we see that

an electric scalar potential function can be introduced

such that

El = b/.L’Al – Vcj,. (27)

By substituting the expressions for El and H, defined

by (26) and (27) into (23), and simplifying the result,

we find

VZA1 – L4’u’(V- V)AI + k2A1

= V(VAI – /.L’r.#V.A1 – i~e.f/@l), (28)

where

kz = ~~p’c,ff’ =

“~’’’+ ’%)o)o ’29)

Imposing the condition

(V – ~’a’v) A, – ime.,,’~, = O. (30)

Equation (28) then reduces to

V’AI – ~’/(V. V)AI + k’A1 = O. (31)

If we consider the particular case where A, has only a

longitudinal component in the z direction, that is,

Al = 2A1Z, (32)
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then A ~z satisfies the scalar wave equation

V2,41Z – #’o’v. VA1, + kzfl]z = o. (33)

It can easily be shown by means of (25), (27), and (30),

that the scalar potential function qil satisfies the wave

equation defined by (33). It will be shown later that the

solutions for A 1,, obtained under the appropriate bound-

ary conditions, give us a complete set of TM modes in

a cylindrical waveguide, The explicit relations between

A ~, and the field vector are:

~(.) = ~-~@hRv X [~,z~] (34)

1
E(,) = &o,i.R(v — ~~~’v) X ‘V X (.4 lz~) (35)

—ic%ff’

where the subscript “e” denotes the fields of electric

type or transverse-magnetic.

Case II. Magnetic Type

To introduce the magnetic type vector potential let

E = exp [(–kJA + ,u’/v) . R]EZ (36)

H = exp [(–icJA + K’c’v) .R]H2. (37)

Equations (16)–(19) become

(V+ p’a’v) x E, = icqu’H, (38)

V x H2 = — iut.ff’Ez (39)

(v+ p’a’v) H, = o (40)

V. EZ=O. (41)

In view of (41), we may introduce a magnetic type

vector potential Az

E,= VXA2. (42)

The remaining steps are similar to ths TM case. Thus,

if Az has only a longitudinal component A w then A z.

satisfies the wave equation

V2AZZ X /.L’u’V. V.42Z + k2.4z, = O. (43)

Solutions of (43), obtained under the proper boundary

conditions, gives us the complete set of magnetic or TE

modes in a cylindrical waveguide. The field vectors are

related to A ~. by

E(m) = exp [(icoA + ~’u’v) . R] V >< (A Q) (4-I)

1
H(.) = — exp [(LJA + p’u’v) . R] (V + ~’a’v).,

l.wp’

x Vx (/4,.;).

It should be observed that

A ~, and A ~. are not identical.

(45)

(33) ancl (43) defined for

TM MODES IN A CIRCULAR C>-LINDRICAL W~VEGUIDE

In this section, we shall give a detailed derivation of

the wave functions pertaining to the TM modes in a

circular cylindrical waveguide, whose i~xis coincides with

the z axis (Fig. 1). The medium inside the guide is

moving along the guide with a constant velocity

v = vi. (46)

Applying the method of separation of variables in a

cylindrical coordinate system to (33) gives

Cos
.413 = XLr,’(k%’) mjei~’:

sin
(47)

where the constants k’ and ~“ satisfy

(-ye)’ + i/.J’u’vw – k2 + (k’)’ = O. (48)

For a perfectly conducting waveguide, which is assumed

here, the electric field satisfies the same boundary con-

dition as in the case of stationary media

?xEe=(l at y=a, (49)

where a denotes the radius of the guide. From (35), it

can be shown that both the q5 and z components of E(’)

are proportional to .T. (k”~). The constant k~, as in the

ordinary theory of waveguide, is therefore determined

by the roots of

~n(kfifa) = O, (50)

where the subscripts n and 1 denote, respectively, the

order of the Bessel Function and the index of the root12

If the roots of the Bessel Functions are denoted by Pnt,

then

k,,le = pnJa. (51)

When the quadratic equation (48) is solved for ~’ one

obtains, after neglecting terms of the order (of (V/C)z,

Finally, by substituting A ,Z defined by (47) into (34)

and (35), one obtains the complete expressions for the

electric and magnetic field vectors.

(54)

Et’ = transverse part of E’

— — Z,t’ [2 x H“] (55)

where

2 The nomenclature concerning the iudex of the rout is discllssed
in: Tai, C. T., Ou the nomenclature of TEM modes in a cylinckical
waveguide, Proc. IRE (Correspondence), vol 49, Sep 1961, p 1442.
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The term COA, according to the explanation following

(13), is given by

()WA=+< ‘;T.
c?

(58)

Hence, using (52), (57) may be written in the form

The first term, on the right of (59), is the propagation

constant of the guided wave, when the medium is sta-

tionary. The correction term due to the motion of the

medium is seen to be independent of the dimension of

the guide. This characteristic can be shown to be valid

for guides of any arbitrary cross section.

The constant Znze in (55) is designated as the trans-

verse-wave impedance pertaining to the TM modes. It is

defined by

1

-{

JJrfv
. + [kz – (kni’)2]1/2 + ; —

}
. (60)

ox’ 2

Again, (60) reduces to the ordinary wave impedance

when the medium is stationary. This completes our

derivation for the TM modes.

TE MODES IN A CIRCULAR CYLINDRICAL WAVEGUIDE

The derivation of the expressions for A 2=,and the cor-

responding electric and magnetic field vectors, is almost

the same as for the TM case. We give here only the

results.

Cos
A z. = ETn(knjm?’) @#7.1%, (61)

sin

where

knZm= pm{/a, (62)

and pnz’ denotes the roots of the derivative of the Bessel

Functions. The constant yn~~, correct to the order of

v/c, is given by

The expressions for the electric and magnetic field

vectors are:

sin
E,” = T B ~ J.(k.Lm~) n~e;r”lmz (64)

Y co s

8J. COS
E4m= –B— ~~emnlmz

dr sin
(65)

~~~ = transverse part of Hm

= Y.lqi x m) (66)

j7zm = m BJ (k.,%) ‘Os @@rim:, (67)n
iup’ sin

where

1

--{

Ju’v—— f [kz — (k#)~]l/~ — i —
)

(69)
wf 2“

THE RECTANGULAR WAVEGUIDE

The fields and the propagation constant for a wave-

guide of rectangular cross section are found by the same

procedure used for the circular waveguide. The complete

expressions for the electric and magnetic fields are given

below without derivation. The dimensions of the guide

and the coordinate system used are illustrated in Fig. 2.

\
z’

Fig. 2. Rectangular waveguide filled with a moving medium.

Case I. Till Modes

H==A:sinEx)cos(?Y)ezrmsz
4~cos(~)xsin(~y) er~zHue = –

Et’ = –

E,. = A

where

k~~2 =

r mm =

&sinex)sin(~y)er.Z,

X“+ia

(70)

(71)

(72)

(73)

(74)
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‘z=w’~’e’eff=az~’’’+ii$)$)
c’~=l__—=l_ ~!!
C02 /.Le

Case II. TE ilzfodes

‘&”=-B?cos(%x)sinc’)ei’mna
‘.m=B:sinE-’)c0s(3)e’r””’
H~m = Ym,,m(2 X E“)

‘zm=zcOsEx)cOsc:y)eirmn’,
where

(75)

(76)

(77)

(78)

(79)

(80)

The other constants occurring in (75)–(79) are defined

by (74).

CONCLUSION

The authors felt it worthwhile

Minkowski’s work which led to

445

to incluc[e some of

(16)–(19). The au-.
thors are convinced of the futility of trying to de-

scribe constitutive parameters p, e and a of media in mo-

tion. As Minkowski realized, only those parameters in
a medium at rest N’, e’ and a’, have physical meanin~~.

With the aid of the Maxwell-Minliowski Equations,

we have derived and solved the wave equations for the

electric or the magnetic field, pertaining to the guided

waves in a circular or rectangular waveguide. The slolu-

tion is facilitated by the introduction of vector and

scalar potential-functions associated with this problem.

The results demonstrate that for a moving medium, the

fields, to the first-order of v/c differ in only two respects

from the fields obtained when the medium is at rest.

First, the propagation constant is modified by a term

which depends upon the velocity as well as the constitu-

tive constants of the stationary media, but is indepen-

dent of the cross section of the guide; seccmd, the trans-

verse-wave impedance or admittance is also modified by

a term which is independent of the dimension of the

guide.
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Generalized Solutions for Optical Maser Amplifiers

N. KUMAGAI, MEMBER, IEEE, AND H. YAMAMOTO, STUDENT, IEEE

Aixfracf—The optical maser amplifier is treated from the

transient analysis point of view using the Lap] ace transform method

as opposed to the conventional sinusoidal steady-state analysis that

sometimes leads to inconsistent results especially for the region

beyond threshold. Firstly, the wave equations are expressed in terms

of Laplace transforms, and then the generalized solutions for both

the transmission and the reflection mode of operation are derived

taking the transient terms into account. Finallly, the inverse Laplace

transforms are obtained yielding the generalized solutions in terms of

real-time functions. In order to emphasize the point of the argument

and also to compare the results of the usual sinusoidal steady-state

analysis, use is made of the simplest possible model of a one-

dimensional system consisting of three media, air, active medium,

and air. An incident coherent transverse electromagnetic wave, which

falls normally on the surface of the system, is assumed. The general-

ized solutions derived agree, in the region below threshold, exactb

Nfanuscript recei>-ed December 1, 1964~ revised March 26! 1965.
The authors are with the Dept. of 131ectrica} Communication

Engineering, School of Engineering, Osaka University, Osaka, Japan.

with that of the sinusoidal steady-state analysis obtained previously

by other investigators. However, for the region beyond critical

threshold, the generalized solutions indicate that the device goes

into a state of self-oscillation with oscillation frequencies that strictly

coincide with those of the Fabry-Perot type resonator. Thus, the

limitation of applicability of the conventional sinusoidal steady-state

analysis is clarified. Some remarks are also given on the clesign

problem of optical maser amplifiers in connection with the transient

terms involved.

INTRODUCTION

T

O THE AUTHORS’ ICN”OWLEDGE, most of

the theoretical treatments of an optical maser

amplifier reported so far have been based on the

sinusoidal steady-state analysis. The investigations by

Jacobs, et al. [1], [2] are typical of those approaches in

which the optical maser amplifier is treated as a trans-

mission-line or boundary-value problem in electro-


