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Guided Waves in Moving Media
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Abstract—This paper contains a theoretical study of the guided
waves in a moving isotropic medium. The normal modes which can
exist in a circular or rectangular wave guides are found by solving
the Maxwell-Minkowski Equations subject to the appropriate bound-
ary conditions. By certain transformations of field vectors, it is possi-
ble to change the Maxwell-Minkowski Equations into familiar forms
such that the method of vector potentials can be applied to derive
complete expressions for the field vectors. The results demonstrate
that expressions for the propagation constant and the transverse-
wave impedance and admittance in stationary media are modified by
terms independent of the guide geometry when the media are moving.

INTRODUCTION

HIS PAPER IS concerned with electromagnetic
Twave propagation in waveguides, filled with di-

electric material, which move down the waveguide
with constant velocity. To simplify the treatment, we
regard the dielectric as being rigid, so that all portions
of the material may be considered to be moving with the
same velocity. We further regard the material as being
electrically and magnetically homogeneous, isotropic,
and linear.

The results of Minkowski’s theory are the foundations
from which we proceed. Consider two reference frames
whose gz axes coincide with an appropriate longitudinal
element of a waveguide of arbitrary cross section. The
primed frame is fixed in the dielectric material, and the
unprimed frame is attached to the waveguide (see
Fig. 1). Thus, the two reference frames are in relative
motion along their 2 axes.

For the observer at rest in the primed reference frame,
the electrodynamics of stationary media apply. In order
to find the formulation of electrodynamics which applies
for the observer at rest, with respect to the waveguide
(i.e., fixed in the unprimed frame), one must cast the
electromagnetic field and source vectors into the four-
and-six-vector form, and then apply the appropriate
form of the Lorentz Transformation according to the
special theory of relativity. The field and source quanti-
ties transform in such a manner that the form of Max-
well’s Equations remains unaltered or invariant. In the
unprimed system, Maxwell’'s Equations are:
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Fig. 1. Circular waveguide filled with a linear, homogeneous, iso-
tropic dissipative medium moving with uniform velocity v with
respect to the guide.
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For media at rest, the constitutive relations are
known. Thus, in the primed reference frame

B = HIH’ (5)
D = ¢E (6)
J =dE. o)

According to Minkowski's theory, (5)—(7) are suf-
ficient for us to determine the constitutive relations
for the unprimed field quantities. By applying the
Lorentz transformation to the field and current vectors
in (5)-(7), Minkowski! obtained the following relations
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1 Sommerfeld, A., Lectures on Theoretical Physics, vol 111, Electro-
dynamics. New York: Academic, 1952, pp 280-283.
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where ¢ and ¢¢ denote the velocities of light in the
medium at rest and in a vacuum (i.e., ¢2=u'¢ and
co2=po€e) and v the velocity of the medium (primed
frame) relative to the waveguide walls (unprimed
frame). If v is assumed to be much smaller than the
velocity of light, in the aforementioned relations, terms
of second order and higher in v/c or v/c, may be ne-
glected when compared with unity. Thus, (8)—(10) be-
come approximately

D~édE+AXH (11)
B~uyH—AXE (12)
J=ov+d(E+vXB) (13)

where A= (1/c*—1/ce®)v.
If the Lorentz transformation is applied to the four-
current vector ([J, icop), one finds that

, 7 \?2 v
p 1—=\—)=p——J.

Co o~
If we confine our discussion here to the steady state
analysis, the free charge density p’, associated with the
reference frame in which the medium is at rest, vanishes.
One notes from (14) that the free charge density mea-

sured in the unprimed coordinate system is not zero, but
that
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Equations (11)—(13) and (15) can be used to eliminate
B, D, J, and p from Maxwell’s Equations (1)-(4). If
the time convention e~%! is used, one may obtain the
following equations, which are accurate to the order
of v/c:

(V 4 iwA) X E = jop’H (16)

(V + iwA — w'o’v) X H = — iweul E (17
(V + iwA)-H = 0 (18)

(V4 iwA — 'o'v)-E =0 (19)

where

’ ! . (T,
€eif = € (1 +i—).
we

Equations (16)—(19) might appropriately be designated
as “Maxwell-Minkowski Equations for Moving Iso-
tropic Media.”
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PoreNTIAL FUNCTIONS

To find proper solutions of (16)—(19) so as to describe
the electromagnetic fields in waveguides, it is con-
venient to introduce potential functions pertinent to
the Maxwell-Minkowski Equations. Similar to the tech-
nique used in standard waveguide theory, two types of
potential functions, the electric and the magnetic types,
will be introduced.

Case I. Electric Type

It will be shown that an electric type vector potential
provides a convenient derivation of the field expressions,
pertaining to the electric or TM modes. To make use
of the standard technique, we first transform (16)—(19)
into familiar forms. This can be done by letting

E = ¢ wARE,
H = ¢iA BH,

(20)
(21)

where R denotes the position vector. Substituting (20)
and (21) into (16)—(19) one obtains the following equa-
tions for E, and H;:

V X Ei = iwu'H; (22)
(V—pe'v) X Hi = — jweqi E (23)
V-Hi =0 (29

(V — Wo'v)-E1 = O, 25)

In view of (24), we may define an electric vector poten-
tial function

H =V XA, (26)

By eliminating H; between (22) and (26), we see that
an electric scalar potential function can be introduced
such that

E1 - iw,u’A1 - V¢1. (27)

By substituting the expressions for E, and H, defined
by (26) and (27) into (23), and simplifying the result,
we find

V2A; — u'd (v V) Ar + B4,

= V(V-A1 — p'o'v-A; — wei 1), (28)
where
k= ol e’ = o€ (1 + z—(r’,«) (29)
we
Imposing the condition
(V= Wa'v) - Ar — iweeidr = 0. (30)
Equation (28) then reduces to
VIA; — u'o’(v- V)AL + B2A; = 0 (31)

If we consider the particular case where A, has only a
longitudinal component in the z direction, that is,

Al = Z\Alzy (32>
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then A,, satisfies the scalar wave equation

V2dy, — plo'v-VAy, + k24, = 0. (33)

It can easily be shown by means of (25), (27), and (30),
that the scalar potential function ¢, satisfies the wave
equation defined by (33). It will be shown later that the
solutions for 4 ,, obtained under the appropriate bound-
ary conditions, give us a complete set of TM modes in
a cylindrical waveguide. The explicit relations between
A1, and the field vector are:

H(e) — e“i“’A'RV X [Alzé] (34)
1
E©® = ——— VBV = 1/o'y) X VX (duf)  (35)
—IWeeff

where the subscript “e” denotes the fields of electric

type or transverse-magnetic.

Case II. Magnetic Type

To introduce the magnetic type vector potential let

E = exp [(—iwA + p'6'v) - R]E, (36)
H = exp [(—iwA + u'¢'v) - R|H.. (37)
Equations (16)—(19) become
(V+ uwo'v) X Ey = iwy’Hy (38)
V X Hy = — {weess Ey (39)
(V4 uwov)-Hy =0 (40)
V-Ey = 0. (41)

In view of (41), we may introduce a magnetic type
vector potential A,

The remaining steps are similar to the TM case. Thus,
if A; has only a longitudinal component 4., then 4.,
satisfles the wave equation

V2Ay X w'a'v-V A,y + k24, = 0. (43)

Solutions of (43), obtained under the proper boundary
conditions, gives us the complete set of magnetic or TE
modes in a cylindrical waveguide. The field vectors are
related to 4., by

E™ = exp [(iwA + @/o'v) RV X (42:.8) (44)
Hm = ——exp [(iwA + w'o’'v)-R|(V + p'e'v)

1870

X VX (d:2). (45)

It should be observed that (33) and (43) defined for

A, and 44, are not identical.

TM Mobgs IN A CIRCULAR CYLINDRICAL WAVEGUIDE

In this section, we shall give a detailed derivation of
the wave functions pertaining to the TM modes in a
circular cylindrical waveguide, whose axis coincides with
the z axis (Fig. 1). The medium inside the guide is
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moving along the guide with a constant velocity
v = vi.

(46)

Applying the method of separation of variables in a
cylindrical coordinate system to (33) gives

cos ) )
A 1z = AJn<ke7’) . 1Z¢el’7~‘3; ‘47)
sin
where the constants k¢ and ¢ satisfy
(v)? + iw'a’vye — kB + (k)% = 0. (48)

For a perfectly conducting waveguide, which is assurmned
here, the electric field satisfies the same boundary con-
dition as in the case of stationary media

7 X E° at r = q, (49)

where @ denotes the radius of the guide. From (35}, it
can be shown that both the ¢ and z components of E®
are proportional to J,(k%). The constant k¢, as in the
ordinary theory of waveguide, is therefore determined
by the roots of

To(knita) = 0, (50)

where the subscripts # and [ denote, respectively, the
order of the Bessel Function and the index of the root.2
If the roots of the Bessel Functions are denoted by .,
then

knle = Pnl/a- (51)

When the quadratic equation (48) is solved for v¢ one
obtains, after neglecting terms of the order of (v/c)?,
)
Yo = % [k2 — (knf)2]/? — 7#"7’”- (52)
Finally, by substituting 4., defined by (47) into (34)

and (35), one obtains the complete expressions for the
electric and magnetic field vectors.

12 sin
Hpe = F 4— Tu(kutr)  nget™rs (53)
v cos
aJ, cos .
Hy = — T ngeiTnies (54)
dr sin
Es = transverse part of E*
= — Zu[s X H] (55)
(knle)ﬂ cos -
Eze = ——“__, AJn<kn le’,) . “’¢6J‘M(I:! (56)
— 1WEetf sin
where
Fnle = ’Ynle — WA (57)

2 The nomenclature concerning the index of the root is discussed
in: Tai, C. T., On the nomenclature of TEy modes in a cylindrical
waveguide, Proc. IRE (Correspondence), vol 49, Sep 1961, p 1442.
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The term wj, according to the explanation following
(13), is given by

w? c? Wy
wy=—{1——})=—r.
c? co? c?

Hence, using (52), (57) may be written in the form

(58)

7 7
IW:i%L%mMW—iG+iG>-@%
2 2we’

2

The first term, on the right of (59), is the propagation
constant of the guided wave, when the medium is sta-
tionary. The correction term due to the motion of the
medium is seen to be independent of the dimension of
the guide. This characteristic can be shown to be valid
for guides of any arbitrary cross section.

The constant Z,;® in (55) is designated as the trans-
verse-wave impedance pertaining to the TM modes. It is
defined by

70— Val® + i’y

!
we

1 r 7
Al = e 2

we 2

Il

(60)

Again, (60) reduces to the ordinary wave impedance
when the medium is stationary. This completes our
derivation for the TM modes.

TE Mobes IN A CIRCULAR CYLINDRICAL WAVEGUIDE

The derivation of the expressions for 4 o, and the cor-
responding electric and magnetic field vectors, is almost
the same as for the TM case. We give here only the
results.

. COS o
Ao = BJ(kni 7) | npermi"z (61)
sin
where
knlm = Pnl,/a; (62)

and p,, denotes the roots of the derivative of the Bessel
Functions. The constant vy.;™, correct to the order of
v/c, 1s given by

77

ua'v

wﬂ=iW—®MﬂW+i2

(63)

The expressions for the electric and magnetic field
vectors are:

om sin .
E = F B—J,(ku™)  ngeit": (64)
7 cos
0J, cos
E¢m = _B [ . 1’L¢61F’” z (65)
dr sin
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H;™ = transverse part of H”
= YV, X E™) (66)
(kni™)? cos o
H = ——— BT (k™) | nge’™":, 67)
o sin
where
Y o’
T = 4 [k — (B,m)?]H2 — —<T + 4 ) (68)
c? 2we’
1 L
Vum = — (Yai™ — iu'o’v)
ol
1 "o’y
= ,‘{iw — Ry~ i 2 } ' (69)
wp 2

TeE RECTANGULAR WAVEGUIDE

The fields and the propagation constant for a wave-
guide of rectangular cross section are found by the same
procedure used for the circular waveguide. The complete
expressions for the electric and magnetic fields are given
below without derivation. The dimensions of the guide
and the coordinate system used are illustrated in Fig. 2.

7/////0/////// —f
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Fig. 2. Rectangular waveguide filled with a moving medium,

Case I. TM Modes

nw | [(mw hw
H, = A—sin <~— x) cos <“ y> ¢ Tmn? (70)
b a b
m mm nw
Hf= — 4—cos (—)r sin <— y) giTmn2 (71)
a o b
Ef = — Zu*(2 X HF) (72)
Bmn? . mm . nw .
Ef =4 ————sin <—— x) Si1n (”— 3’> ¢itmn, (73)
— 1€ ot a b
where
mar\ 2 nw \ 2
a b
W ol
Pmn = i_ (k2 - kmn2)1/2 - —<T +i > (74)
c? 2we’
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;
€

4
¢
k2 = € otr = '€ <1 + i»—)
¢

T = 1——i=1“'u060
o? ﬂ,el
1 u'a’v
Zpn® = _—[i (k2 - kmn2)”2 +i—| (75)
we’ 2
Case II. TE Modes
nr m nr )
Emr = — B—cos <—~ “C> sin <*‘ 3’> giTmnz (76)
b a b
W W
E/m = B 7T in <-—7r— x) cos <—lr y) gimnz 7
o o b
Hm = V(2 X E™) (78)
B m 2 A
Ho" = cos (—7L x) cos <* y> ¢itm, (79)
Toou’ a b
where
1 o'
Ymnm = _I:i(kz - kmng)”‘rl — 4 ]' (80)
wu 2

The other constants occurring in (75)—(79) are defined
by (74).
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CONCLUSION

The authors felt it worthwhile to include some of
Minkowski’'s work which led to (16)—(19). The au-
thors are convinced of the futility of trying to de-
scribe constitutive parameters u, € and ¢ of media in mo-
tion. As Minkowski realized, only those parameters in
a medium at rest u/, ¢ and ¢/, have physical meaning.

With the aid of the Maxwell-Minkowski Equations,
we have derived and solved the wave equations for the
electric or the magnetic field, pertaining to the guided
waves in a circular or rectangular waveguide. The solu-
tion is facilitated by the introduction of wvector and
scalar potential-functions associated with this problem.
The results demonstrate that for a moving medium, the
fields, to the first-order of v/¢ differ in only two respects
from the fields obtained when the medium is at rest.
First, the propagation constant is modified by a term
which depends upon the velocity as well as the constitu-
tive constants of the stationary media, but is indepen-
dent of the cross section of the guide; second, the trans-
verse-wave impedance or admittance is also modified by
a term which is independent of the dimension of the
guide.
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Generalized Solutions for Optical Maser Amplifiers

N. RKUMAGAI, MEMBER, TEEE, AND H. YAMAMOTO, STUDENT, IEEE

Abstract—The optical maser amplifier is treated from the
transient analysis point of view using the Laplace transform method
as opposed to the conventional sinusoidal steady-state analysis that
sometimes leads to inconsistent results especially for the region
beyond threshold. Firstly, the wave equations are expressed in terms
of Laplace transforms, and then the generalized solutions for both
the transmission and the reflection mode of operation are derived
taking the transient terms into account. Finally, the inverse Laplace
transforms are obtained yielding the generalized solutions in terms of
real-time functions. In order to emphasize the point of the argument
and also to compare the results of the usual sinusoidal steady-state
analysis, use is made of the simplest possible model of a one-
dimensional system consisting of three media, air, active medium,
and air. An incident coherent transverse electromagnetic wave, which
falls normally on the surface of the system, is assumed. The general-
ized solutions derived agree, in the region below threshold, exactly
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with that of the sinusoidal steady-state analysis obtained previously
by other investigators. However, for the region beyond critical
threshold, the generalized solutions indicate that the device goes
into a state of self-oscillation with oscillation frequencies that strictly
coincide with those of the Fabry~Perot type resonator. Thus, the
limitation of applicability of the conventional sinusoidal steady-state
analysis is clarified. Some remarks are also given on the design
problem of optical maser amplifiers in connection with the transient
terms involved.

INTRODUCTION

O THE AUTHORS KNOWLEDGE, most of

I the theoretical treatments of an optical maser
amplifier reported so far have been based on the
sinusoidal steady-state analysis. The investigations by
Jacobs, et al. [1], [2] are typical of those approaches in
which the optical maser amplifier is treated as a trans-
mission-line or boundary-value problem in electro-



